(8182)63-90-72 +7(7172)727-132 (4722)40-23-64 (4832)59-03-52 (423)249-28-31 (844)278-03-48 Вологда (8172)26-41-59 Воронеж (473)204-51-73 Екатеринбург (343)384-55-89 Иваново (4932)77-34-06 Ижевск (3412)26-03-58 Казань (843)206-01-48 (4012)72-03-81 (4842)92-23-67 (3842)65-04-62 (8332)68-02-04 (861)203-40-90 (391)204-63-61 (4712)77-13-04 (4742)52-20-81 (3519)55-03-13 (495)268-04-70 (8152)59-64-93 (8552)20-53-41 (831)429-08-12 (3843)20-46-81 (383)227-86-73 (4862)44-53-42 (3532)37-68-04 (8412)22-31-16 (342)205-81-47 - (863)308-18-15 (4912)46-61-64 (846)206-03-16 - (812)309-46-40 (845)249-38-78 (4812)29-41-54 (862)225-72-31 (8652)20-65-13 (4822)63-31-35 (3822)98-41-53 (4872)74-02-29 (3452)66-21-18 (8422)24-23-59 (347)229-48-12 (351)202-03-61 (8202)49-02-64 (4852)69-52-93

: mfp@nt-rt.ru | http://micrannpf.nt-rt.ru

GaAs МОНОЛИТНЫЕ ИНТЕГРАЛЬНЫЕ СХЕМЫ

НПФ «Микран» производит GaAs CBЧ монолитные интегральные схемы (СВЧ МИС), дискретные транзисторы и диоды. Данные изделия предназначены для телекоммуникационной и измерительной аппаратуры, выпускаемой фирмой, а также для удовлетворения нужд предприятий электронной отрасли РФ.

Производственная технологическая линия обеспечивает изготовление GaAs CB4 MUC на основе pHEMT с длиной затвора 0,5 и 0,25 мкм.

Проектная производительность линии составляет 100 пластин диаметром 100 мм в месяц.

НПФ «Микран» осуществляет полный цикл производства СВЧ МИС, включающий: проектирование гетероструктур, разработку технологий, проектирование МИС, производство МИС, СВЧ тестирование МИС, надёжностные испытания МИС.

Ведётся разработка технологий производства GaAs CBЧ МИС на основе транзисторов с длиной затвора 100 нм и 70 нм, предназначенных для работы в частотном диапазоне до 110 ГГц.

СОДЕРЖАНИЕ

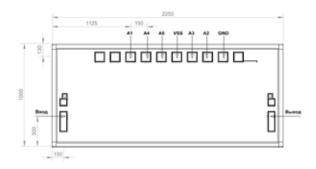
Аттенюаторы	
MP107 GaAs MИС 5-разрядного аттенюатора 0,1 - 40 ГГц MP108 GaAs MИС 6-разрядного аттенюатора 0,1 - 20 ГГц	
MP109 GaAs МИС 6-разрядного аттенюатора 0,1 - 20 ГГц	
Коммутаторы	
MP202 GaAs MИС двухпозиционного СВЧ коммутатора 0,1 - 6 ГГц MP203 GaAs МИС двухпозиционного СВЧ коммутатора 0,1 - 20 ГГц	
MP205 GaAs MИС двухпозиционного СВЧ коммутатора 0,1 - 20 ГГц	14
Усилители	
MP502 GaAs МИС буферного усилителя 1 - 4 ГГц	
MP531 GaAs МИС малошумящего усилителя 8 - 12 ГГц	
MP540 GaAs MИС сверхширокополосного усилителя 0,01 - 20 ГГц MP541 GaAs MИС буферного усилителя 7 - 12 ГГц	
Фазовозвращатели	
MP305 GaAs МИС 6-разрядного фазовращателя L-диапазона	24
MP308 GaAs MИС 6-разрядного фазовращателя S-диапазона	
MP332 GaAs MИС 6-разрядного фазовращателя X-диапазона	28
Указания по применению и эксплуатации	30
Разработка СВЧ МИС пол заказ	32

МР107 GaAs МИС 5-ти РАЗРЯДНОГО АТТЕНЮАТОРА 0,1-40 ГГЦ

МИС выполнена на основе GaAs pHEMT с длиной затвора 0,25 мкм. МИС ориентирована для работы в составе гибридно-интегральных модулей с общей герметизацией. МИС содержит пять коммутируемых секций ослабления и драйвер цифрового управления параллельного типа. Сигналы управления стандарта ТТЛ. Размеры кристалла 2,25х1,0х0,1 мм.

ОСНОВНЫЕ ПАРАМЕТРЫ (T=25 °C)

Параметр, единица измерения	Значение
Диапазон рабочих частот, ГГц	0,140,0
Количество разрядов	5
Начальные потери, дБ, не более	6,5
Диапазон вносимых ослаблений, дБ	31
Шаг вносимого ослабления, дБ	1
Паразитная фазовая конверсия, град, не более	
- диапазон частот 0,1 - 15 ГГц	30
- диапазон частот 15 - 40 ГГц	70
Напряжение питания, В	-7,5
Ток потребления, мА, не более	5


СТРУКТУРНАЯ СХЕМА

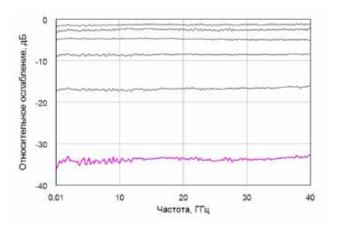
УПРАВЛЕНИЕ СОСТОЯНИЕМ

Состояние	Напряжение управления (A1-A6), В
Секция аттенюатора на проход	0÷0,8
Введенное ослабление секцией	2,2÷5,0

РАСПОЛОЖЕНИЕ КОНТАКТНЫХ ПЛОЩАДОК [МКМ]

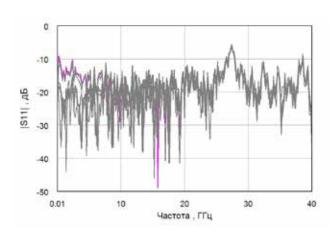
Обозначение	Назначение
Вход	СВЧ вход
Выход	СВЧ выход
A1	Управление секцией 1,0 дБ
A2	Управление секцией 2,0 дБ
A3	Управление секцией 4,0 дБ
A4	Управление секцией 8,0 дБ
A 5	Управление секцией 16,0 дБ
VSS	Напряжение питания драйверов управления
GND	06щий

IOHOJIVTHBIE VIHTELPAJISHBIE CXEMBI

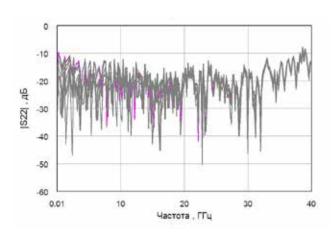

Типовые характеристики (T=25 °C)

Начальные потери

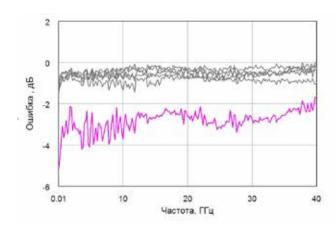
-5 -6 -0.01 10 20 30 40


Относительное вносимое ослабление

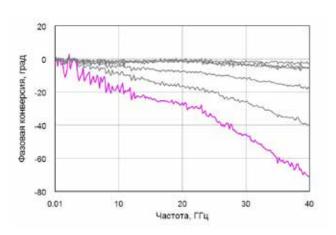
(основных состояний и полного включения)


Возвратные потери по входу

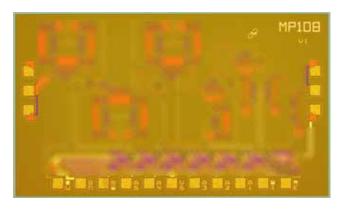
(основных состояний и полного включения)


Возвратные потери по выходу

(основных состояний и полного включения)

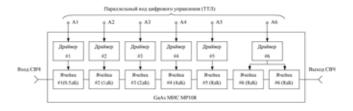

Абсолютная амплитудная ошибка

(основных состояний и полного включения)


Относительная фазовая конверсия

(основных состояний и полного включения)

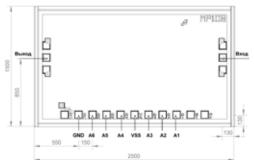
МР108 GaAs МИС 6-ти РАЗРЯДНОГО АТТЕНЮАТОРА 0,1-20 ГГЦ



МИС выполнена на основе GaAs pHEMT с длиной затвора 0,5 мкм. МИС предназначена для работы в составе гибридно-интегральных модулей с общей герметизацией. МИС содержит шесть коммутируемых секций ослабления и драйвер цифрового управления параллельного типа. Сигналы управления стандарта ТТЛ. Размеры кристалла 2,5х1,5х0,1 мм.

ОСНОВНЫЕ ПАРАМЕТРЫ (T=25 °C)

Параметр, единица измерения	Значение
Диапазон рабочих частот, ГГц	0,120,0
Количество разрядов	6
Начальные потери, дБ, не более	5,5
Диапазон вносимых ослаблений, дБ	31,5
Шаг вносимого ослабления, дБ	0,5
Паразитная фазовая конверсия, град, не более	
- диапазон частот 0,1 - 10 ГГц	30
- диапазон частот 10 - 20 ГГц	60
Напряжение питания, В	-7,5
Ток потребления, мА, не более	5

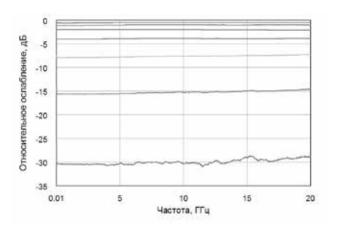

СТРУКТУРНАЯ СХЕМА

УПРАВЛЕНИЕ СОСТОЯНИЕМ

Состояние	Напряжение управления (A1-A6), В
Секция аттенюатора на проход	0÷0,8
Введенное ослабление секцией	2,2÷5,0

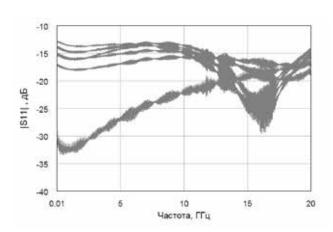
РАСПОЛОЖЕНИЕ КОНТАКТНЫХ ПЛОЩАДОК [МКМ]

-	-
Обозначение	Назначение
Вход	СВЧ вход
Выход	СВЧ выход
A1	Управление секцией 0,5 дБ
A2	Управление секцией 1,0 дБ
A3	Управление секцией 2,0 дБ
A4	Управление секцией 4,0 дБ
A 5	Управление секцией 8,0 дБ
A6	Управление секцией 16,0 дБ
VSS	Напряжение питания драйверов управления
GND	Общий

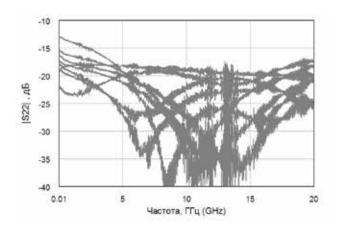


Начальные потери

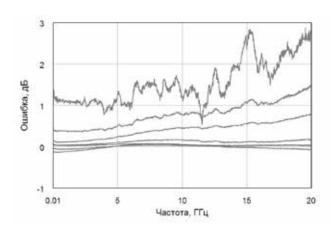
-5 -6 -0.01 5 10 15 20


Относительное вносимое ослабление

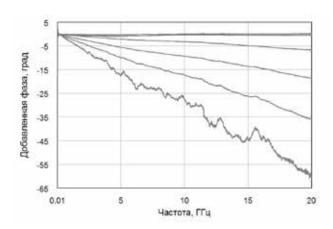
(основных состояний и полного включения)


Возвратные потери по входу

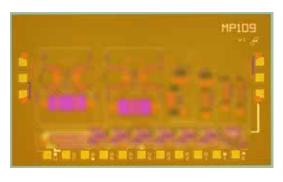
(основных состояний и полного включения)


Возвратные потери по выходу

(основных состояний и полного включения)

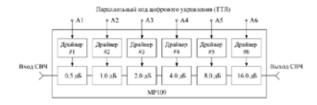

Абсолютная амплитудная ошибка

(основных состояний и полного включения)


Относительная фазовая конверсия

(основных состояний и полного включения)

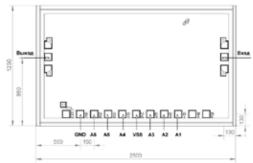
MP-109D GaAs MИС 6-РАЗРЯДНОГО АТТЕНЮАТОРА 0,1 - 20 ГГЦ



МИС выполнена на основе GaAs pHEMT с длиной затвора 0,5мкм. МИС предназначена для работы в составе гибридно-интегральных модулей с общей герметизацией. МИС содержит шесть коммутируемых секций ослабления и драйвер цифрового управления параллельного типа. Сигналы управления стандарта ТТЛ. Размеры кристалла 2,5х1,5х0,1 мм.

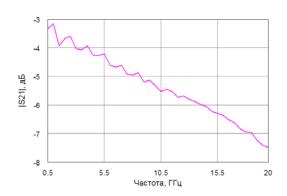
ОСНОВНЫЕ ПАРАМЕТРЫ (T=25 °C)

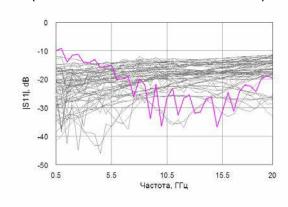
Параметр, единица измерения	Значение
Диапазон рабочих частот, ГГц	0,120,0
Количество разрядов	6
Начальные потери, дБ, не более	7,5
Диапазон вносимых ослаблений, дБ	31,5
Шаг вносимого ослабления, дБ	0,5
СКО амплитудной ошибки, дБ, не более	0,35
Паразитная фазовая конверсия, град, не более	
- диапазон частот 0,1 - 10 ГГц	±4
- диапазон частот 10 - 20 ГГц	±8
Напряжение питания, В	- 7,5
Ток потребления, мА, не более	5

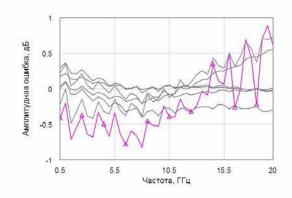

СТРУКТУРНАЯ СХЕМА

УПРАВЛЕНИЕ СОСТОЯНИЕМ

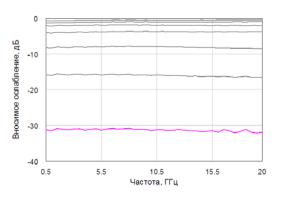
Состояние	Напряжение управления (А1-А6), В
Секция аттенюатора на проход	0/0,8
Введенное ослабление секцией	2,2/5,0


РАСПОЛОЖЕНИЕ КОНТАКТНЫХ ПЛОЩАДОК [МКМ]

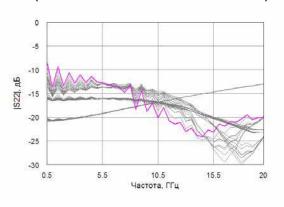

Обозначение	Назначение	
Вход	СВЧ вход	
Выход	СВЧ выход	
A1	Управление секцией 0,5 дБ	
A2	Управление секцией 1,0 дБ	
A3	Управление секцией 2,0 дБ	
A4	Управление секцией 4,0 дБ	
A 5	Управление секцией 8,0 дБ	
A6	Управление секцией 16,0 дБ	
VSS	Напряжение питания драйверов управления	
GND	Общий	


Типовые характеристики (T=25 °C) Начальные потери

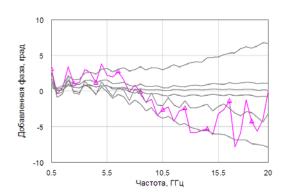
Возвратные потери по входу (всех состояний и полного включения)

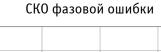


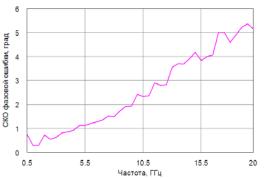
Абсолютная амплитудная ошибка (основных состояний и полного включения)



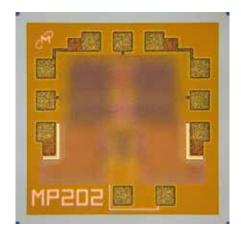
СКО амплитудной ошибки 0.4 ЯP 0.35 СКО амплитудной ошибки, 0.3 0.25 0.2 0.15 0.1 0.5 10.5 20 Частота, ГГц


Относительное вносимое ослабление (основных состояний и полного включения)

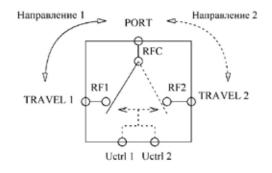



Возвратные потери по выходу (всех состояний и полного включения)

Абсолютная фазовая конверсия (основных состояний и полного включения)



MP202 GaAs MИС ДВУХПОЗИЦИОННОГО СВЧ КОММУТАТОРА 0,1-6 ГГЦ

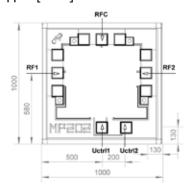


МИС двухпозиционного (SPDT) СВЧ коммутатора. МИС выполнена на основе GaAs pHEMT с длиной затвора 0,5 мкм. МИС предназначена для работы в составе гибридно-интегральных СВЧ модулей с общей герметизацией. Размеры кристалла 1,0х1,0х0,1 мм.

ОСНОВНЫЕ ПАРАМЕТРЫ (T=25 °C)

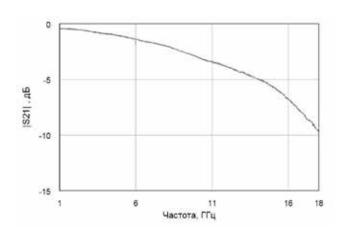
Параметр, единица измерения	Значение
Диапазон рабочих частот, ГГц	0,16,0
Вносимые потери, дБ, не более	1,5
Развязка отключенного плеча, дБ, не менее	25
Обратные потери плеча на проход, дБ, не более	-20
Максимальная линейная мощность СВЧ сигнала, дБм	+23
Напряжение управления, В	0/+5 (+3,3)

СТРУКТУРНАЯ СХЕМА

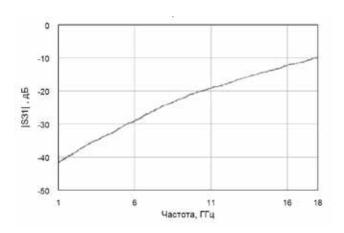

PORT(RFC) - общий СВЧ порт TRAVEL1(RF1) - СВЧ порт направления 1 TRAVEL2(RF2) - СВЧ порт направления 2 Uctrl 1 - сигнал управления Uctrl 2 - сигнал управления, Uctrl 2=NOT(Uctrl 1)

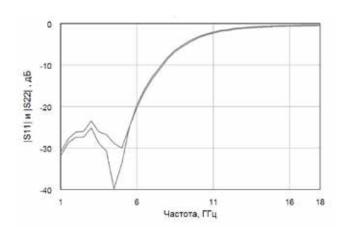
УПРАВЛЕНИЕ СОСТОЯНИЕМ

Состояние	Напряжение управления Uctrl 1, B	Напряжение управления Uctrl 2, B
Направление 1	+5 (+3,3)	0
Направление 2	0	+5 (+3,3)

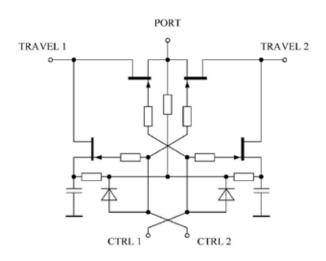

РАСПОЛОЖЕНИЕ КОНТАКТНЫХ ПЛОЩАДОК [МКМ]

Обозначение	Назначение	
RFC	Общий СВЧ порт	
RF1	СВЧ порт плеча/направления 1	
RF2	СВЧ порт плеча/направления 2	
Uctrl 1	Управления состоянием	
Uctrl 2	Управление состоянием	

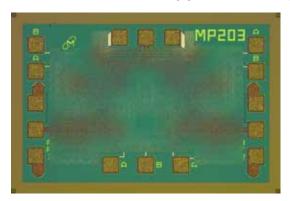



Начальные потери

Развязка отключенного плеча

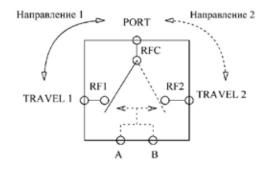

Возвратные потери плеч на проход

Динамические характеристики проходной мощности



Электрическая схема коммутатора

МР203 GaAs МИС ДВУХПОЗИЦИОННОГО СВЧ КОММУТАТОРА 0,1-20 ГГЦ



МИС двухпозиционного (SPDT) СВЧ коммутатора. МИС выполнена на основе GaAs pHEMT с длиной затвора 0,5 мкм. МИС предназначена для работы в составе гибридно-интегральных СВЧ модулей с общей герметизацией. Размеры кристалла 1,5х1,0х0,1 мм.

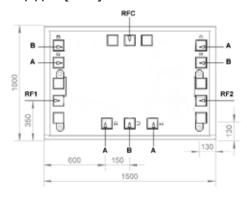
ОСНОВНЫЕ ПАРАМЕТРЫ (T=25 °C)

Параметр, единица измерения	Значение	
Диапазон рабочих частот, ГГц	0,120,0	
Начальные вносимые потери, дБ, не более	2,5	
Развязка отключенного плеча, дБ, не менее	40	
Обратные потери плеча на проход, дБ, не более	-10	
Обратные потери отключенного плеча, дБ, не более	-10	
Максимальная линейная мощность СВЧ сигнала, дБм	+17	
Напряжение управления, В	0/-5	

СТРУКТУРНАЯ СХЕМА

PORT(RFC) - общий СВЧ порт TRAVEL1(RF1) - СВЧ порт направления 1 TRAVEL2(RF2) - СВЧ порт направления 2

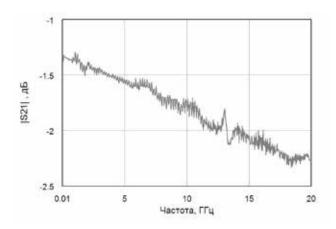
А - сигнал управления

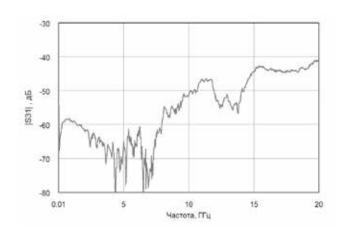

В - сигнал управления, В=NOT(A)

УПРАВЛЕНИЕ СОСТОЯНИЕМ

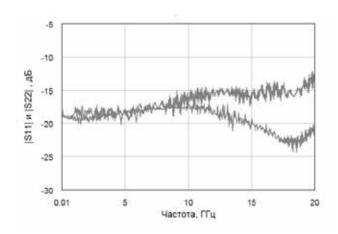
Состояние	остояние Напряжение управления А, В Напряжение управления В, В		
Направление 1	0	-5	
Направление 2 -5		0	

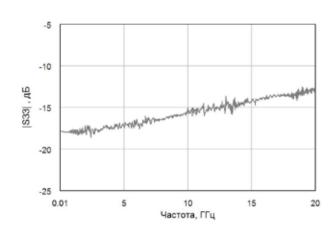
РАСПОЛОЖЕНИЕ КОНТАКТНЫХ ПЛОЩАДОК [МКМ]

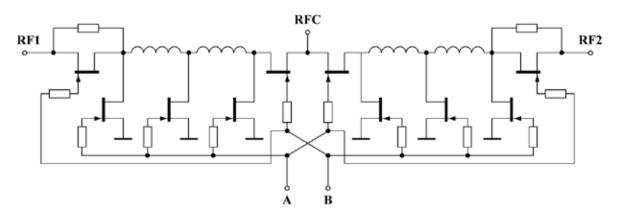

Обозначение	Назначение	
RFC	Общий СВЧ порт	
RF1	СВЧ порт плеча/направления 1	
RF2	СВЧ порт плеча/направления 2	
Α	Управления состоянием	
В	Управление состоянием	



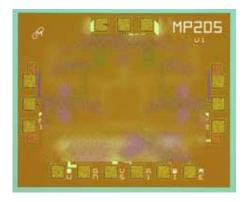
Начальные потери


Развязка отключенного плеча



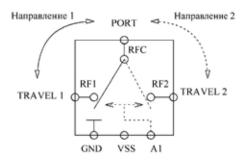

Возвратные потери плеч на проход

Возратные потери отключенного плеча



Электрическая схема коммутатора

MP205 GaAs MИС ДВУХПОЗИЦИОННОГО СВЧ КОММУТАТОРА 0,1-20 ГГЦ



МИС выполнена на основе GaAs pHEMT с длиной затвора 0,5 мкм. МИС предназначена для работы в составе гибридно-интегральных СВЧ модулей с общей герметизацией. МИС содержит двухпозиционный (SPDT) СВЧ коммутатор и драйвер цифрового управления. Сигнал управления стандарта ТТЛ. Размеры кристалла 1,5х1,25х0,1 мм.

ОСНОВНЫЕ ПАРАМЕТРЫ (T=25 °C)

Параметр, единица измерения	Значение	
Диапазон рабочих частот, ГГц	0,120,0	
Начальные вносимые потери, дБ, не более	2,5	
Развязка отключенного плеча, дБ, не менее	40	
Обратные потери плеча на проход, дБ, не более	-10	
Обратные потери отключенного плеча, дБ, не более	-10	
Максимальная линейная мощность СВЧ сигнала, дБм	+17	
Напряжение питания, В	-7,5	
Ток потребления, мА, не более	3	

СТРУКТУРНАЯ СХЕМА

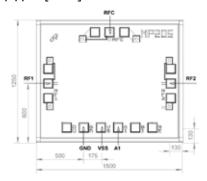
PORT(RFC) - общий СВЧ порт

TRAVEL1(RF1) - СВЧ порт направления 1

TRAVEL2(RF2) - СВЧ порт направления 2

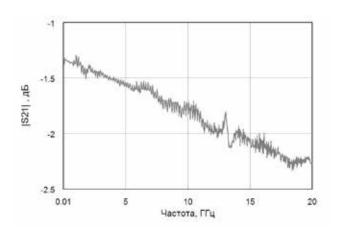
GND - общий/возвратный сигнала управления/питания драйвера

VSS - питания драйвера управления

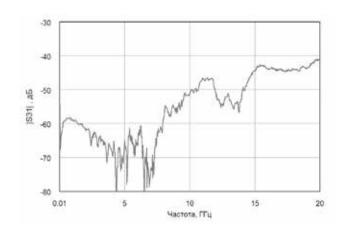

А1 - сигнал управления состоянием СВЧ коммутатора

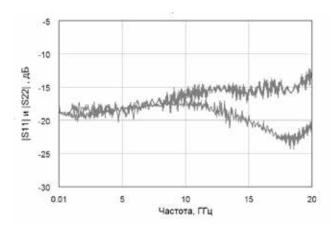
УПРАВЛЕНИЕ СОСТОЯНИЕМ

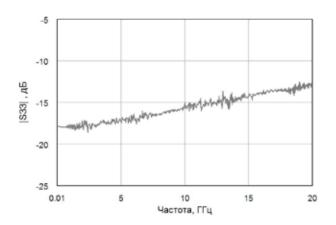
Состояние	Напряжение управления (А1), В	
Направление 1	0÷0,8	
Направление 2	2,2÷5,0	


РАСПОЛОЖЕНИЕ КОНТАКТНЫХ ПЛОЩАДОК [МКМ]

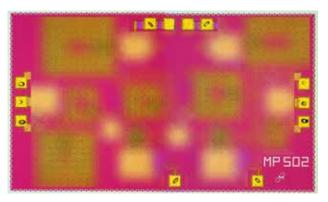
Обозначение	Назначение	
RFC	Общий СВЧ порт	
RF1	СВЧ порт плеча/направления 1	
RF2	СВЧ порт плеча/направления 2	
A1	Управление состоянием коммутатора	
VSS	Напряжение питания драйвера управления	
GND	Общий	




Начальные потери


Развязка отключенного плеча

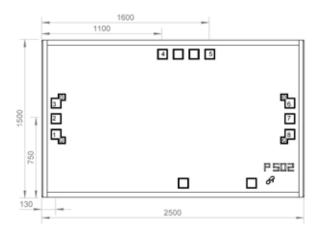
Возвратные потери плеч на проход



Возратные потери отключенного плеча

MP502 GaAs MИС БУФЕРНОГО УСИЛИТЕЛЯ 1-4 ГГЦ

МИС предназначена для работы в составе гибридноинтегральных СВЧ модулей с общей герметизацией. Усилитель изготовлен на основе GaAs pHEMT с длиной затвора 0,25 мкм. Размеры кристалла 2,5х1,5х0,1 мм.


OCHOBHЫЕ ПАРАМЕТРЫ Vdd1=Vdd2=+5 B (T=25 °C, Idd=80 мA)

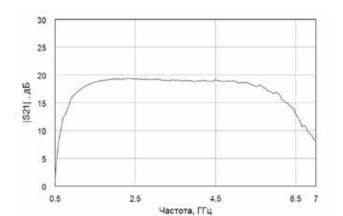
	Значение	
Наименование параметра, единицы измерения	Мин.	Макс.
Рабочая полоса частот, ГГц	1	4
Коэффициент усиления, дБ	18	20
Возвратные потери вх/вых, дБ	-	-12
Коэффициент шума, дБ		4,5
Выходная линейная мощность, дБм	13	-
Ток потребления, мА	-	90

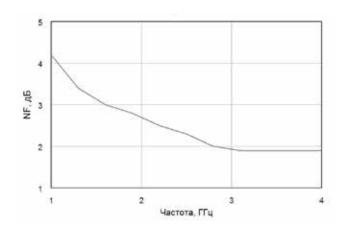
ТИПОВАЯ СХЕМА ВКЛЮЧЕНИЯ

RF_IN N RF_OUT

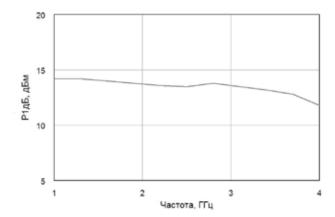
РАСПОЛОЖЕНИЕ КОНТАКТНЫХ ПЛОЩАДОК [МКМ]

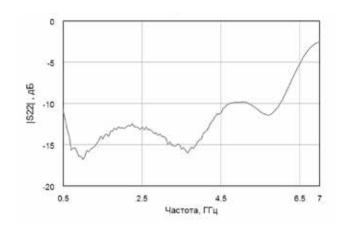
ОПИСАНИЕ КОНТАКТОВ


Контакт	Функция	Описание	
2	IN	Вход усилителя. Вход согласован с радиочастотным трактом 50 Ом в полосе 1–4 ГГц	
4, 5	Vdd1, Vdd2	Подача напряжения питания на первый и второй каскад усилителя. Требуются внешние блокирующие конденсаторы номиналом 100 пФ и 0,1 мкф	
7	OUT	Выход усилителя. Выход согласован с радиочастотным трактом 50 Ом в полосе 1–4 ГГц	
1, 3, 6, 8	GND	Электрически связанная земля с обратной стороной МИС	

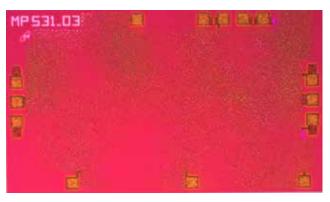


Типовые характеристики Vdd1=Vdd2=+5 B (T=25 °C, Idd=80 мA)


Коэффициент усиления

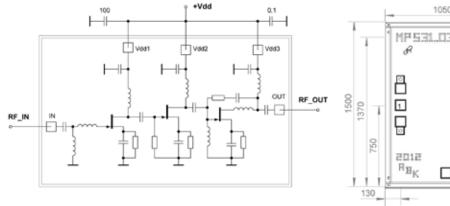

Коэффициент шума

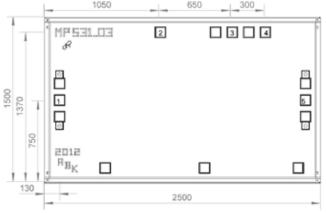
Выходная линейная мощность



Возвратные потери по выходу

MP531 GaAs MUC МАЛОШУМЯЩЕГО УСИЛИТЕЛЯ 8-12 ГГЦ

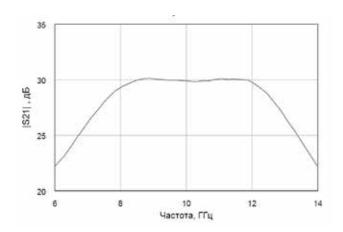

МИС малошумящего усилителя предназначена для работы в составе гибридно-интегральных СВЧ модулей с общей герметизацией. Усилитель изготовлен на основе GaAs pHEMT с длиной затвора 0,25 мкм. Размеры кристалла 2,5х1,5х0,1 мм.


OCHOBHЫЕ ПАРАМЕТРЫ Vdd1=Vdd2=Vdd3=+5 B (T=25°C, Idd=45 мA)

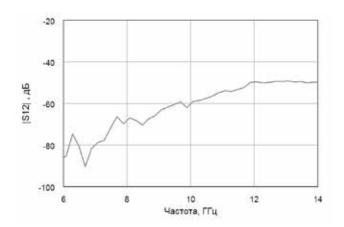
	Значение	
Наименование параметра, единицы измерения	Мин.	Макс.
Рабочая полоса частот, ГГц	8	12
Коэффициент усиления, дБ	24	26
Возвратные потери вх/вых, дБ	-	-10
Коэффициент шума, дБ		2
Ток потребления, мА	-	90
Рабочая температура, ⁰ C	-55	60

ТИПОВАЯ СХЕМА ВКЛЮЧЕНИЯ

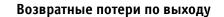
РАСПОЛОЖЕНИЕ КОНТАКТНЫХ ПЛОЩАДОК [МКМ]

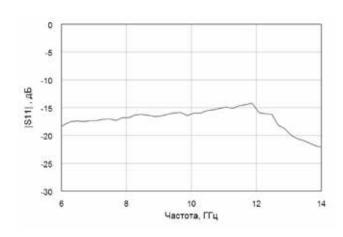

ОПИСАНИЕ КОНТАКТОВ

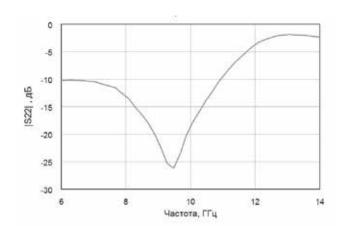
Контакт	Функция	Описание	
1	IN	Вход усилителя. Вход согласован с радиочастотным трактом 50 Ом в полосе 6—14 ГГц	
2, 3, 4	Vdd1, Vdd2, Vdd3	Подача напряжения питания на первый, второй и третий каскад усилителя. Требуются внешни блокирующие конденсаторы номиналом 100 пФ и 0,1 мкф	
5	OUT	Выход усилителя. Выход согласован с радиочастотным трактом 50 Ом в полосе 6—11 ГГц	

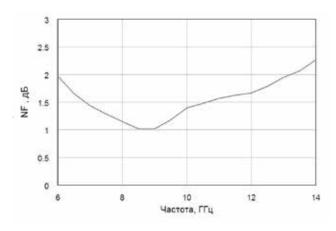


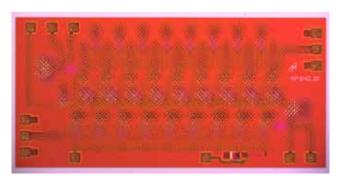
Типовые характеристики Vdd1=Vdd2=Vdd3=+5 B (T=25 °C, Idd=45 MA)


Коэффициент усиления



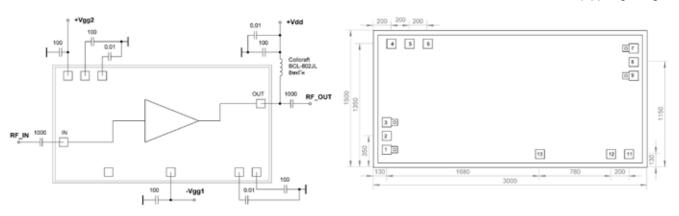

Обратная передача


Возвратные потери по входу



Коэффициент шума

MP540 GaAs MUC СВЕРХШИРОКОПОЛОСНОГО УСИЛИТЕЛЯ 0,01-20 ГГЦ


МИС сверхширокополосного усилителя предназначена для работы в составе гибридно-интегральных СВЧ модулей с общей герметизацией. Усилитель изготовлен на основе GaAs pHEMT с длиной затвора 0,25 мкм. Размеры кристалла 1,5х3,0х0,1 мм.

OCHOBHЫЕ ПАРАМЕТРЫ $Vdd=+7\,$ B, $Vg1=+1.5\,$ B, $Vgg2=-1B\,$ ($T=25\,$ °C, $Idd=120\,$ мA)

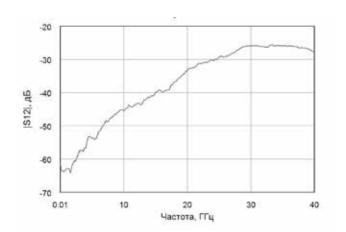
	Значение	
Наименование параметра, единицы измерения	Мин.	Макс.
Рабочая полоса частот, ГГц	0,01	20
Коэффициент усиления, дБ	10	12,5
Возвратные потери вх/вых, дБ	-	-13
Коэффициент шума@10ГГц, дБ		5,8
Линейная мощность@10ГГц, дБм	14	18
Ток потребления, мА	-	130

ТИПОВАЯ СХЕМА ВКЛЮЧЕНИЯ

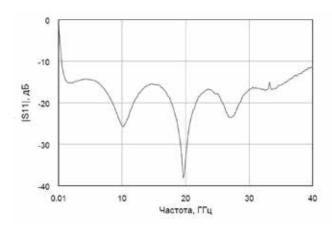
РАСПОЛОЖЕНИЕ КОНТАКТНЫХ ПЛОЩАДОК [МКМ]

ОПИСАНИЕ КОНТАКТОВ

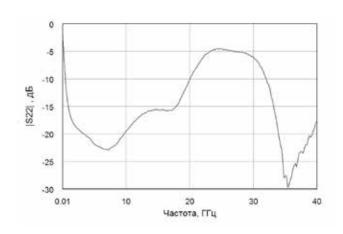
Контакт	Функция	Описание
2	IN	Вход усилителя. Вход согласован с радиочастотным трактом 50 Ом в полосе 0,01–40 ГГц
4	V _{GG} 2	Подача напряжения смещения на каскад. Требуются внешний блокирующий конденсатор номиналом 100 пФ
5, 6		Цепи блокировки выходной балансной нагрузки усилителя по переменному току. Блокировка осуществляется посредством внешних конденсаторов номиналом 100 пФ и 0,01 мкф
8	OUT	Выход усилителя. Выход согласован с радиочастотным трактом 50 Ом в полосе 0,01–20 ГГц
11, 12		Цепи блокировки входной балансной нагрузки усилителя по переменному току. Блокировка осуществляется посредством внешних конденсаторов номиналом 100 пФ и 0,01 мкф
13	Vgg1	Подача напряжения смещения на каскад. Требуются внешний блокирующий конденсатор номиналом 100 пФ
1, 3, 7, 9	GND	Электрически связанная земля

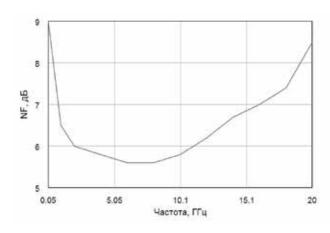


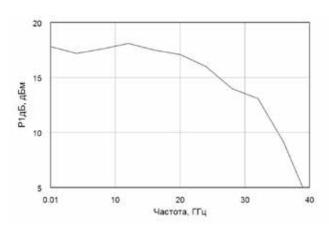
Типовые характеристики Vdd= +7 B, Vg1= +1,5 B, Vgg2= -1 B (T=25 °C, Idd=120 мA)


Коэффициент усиления

25 20 20 15 10 5 0 0.01 10 20 30 40


Обратная передача


Возвратные потери по входу

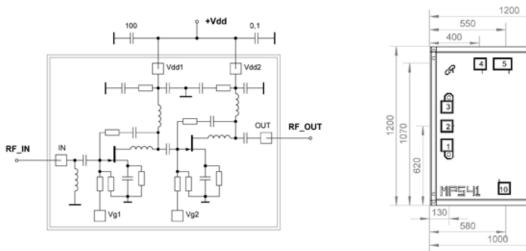

Возвратные потери по выходу

Коэффициент шума

Выходная линейная мощность

МР541 GaAs МИС БУФЕРНОГО УСИЛИТЕЛЯ 7-12 ГГЦ

МИС предназначена для работы в составе гибридно-интегральных СВЧ модулей с общей герметизацией. Усилитель изготовлен на основе GaAs рНЕМТ с длиной затвора 0,25 мкм. Размеры кристалла 1,2x1,2x0,1 мм.


OCHOBHЫЕ ПАРАМЕТРЫ Vdd1=Vdd2=+5 B, Vg1=Vg2 — не подключены, (T=25 °C, Idd=85 мA)

3начение Наименование параметра, единицы измерения Мин. Макс. 12 Рабочая полоса частот, ГГц 7 Коэффициент усиления, дБ 19 23 Возвратные потери вх/вых, дБ -10 Выходная линейная мощность, дБм 15 Ток потребления, мА 120

ТИПОВАЯ СХЕМА ВКЛЮЧЕНИЯ

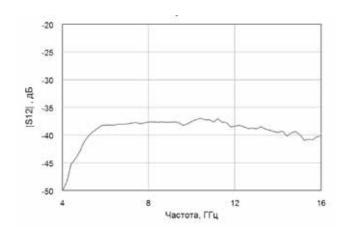
РАСПОЛОЖЕНИЕ КОНТАКТНЫХ ПЛОЩАДОК [МКМ]

9

ОПИСАНИЕ КОНТАКТОВ

Контакт	Функция	Описание	
2	IN	Вход усилителя. Вход согласован с радиочастотным трактом 50 Ом в полосе 6 — 12 ГГц	
4, 5	Vdd1, Vdd2	Подача напряжения питания на первый и второй каскад усилителя. Требуются внешние блокирующие конден- саторы номиналом 100 пФ и 0,1 мкф	
7	OUT	Выход усилителя. Выход согласован с радиочастотным трактом 50 Ом в полосе 4 — 16 ГГц	
9, 10	Vg1, Vg2	Дополнительное, внешнее напряжение смещения первого и второго каскада усилителя	
1, 3, 6, 8	GND	Электрически связанная земля с обратной стороной МИС	

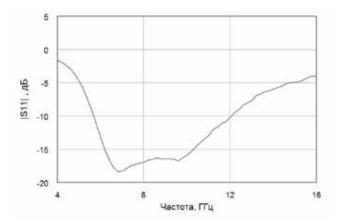
Типовые характеристики Vdd1=Vdd2=+5 B, Vg1=Vg2 – не подключены, (T=25 °C, Idd=85 мA)

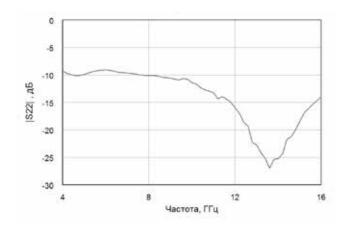

Коэффициент усиления

30 25 20 20 10

5

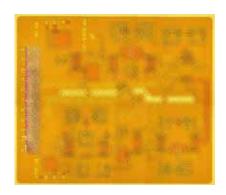
0


Обратная передача


Возвратные потери по входу

Частота, ГГц

12



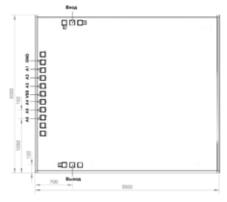
Возвратные потери по выходу

МР305 GaAs MИС 6-ти РАЗРЯДНОГО ФАЗОВОЗВРАЩАТЕЛЯ L-ДИАПАЗОНА

МИС выполнена на основе GaAs pHEMT с длиной затвора 0,5 мкм. МИС предназначена для работы в составе гибридно-интегральных модулей с общей герметизацией. МИС содержит шесть коммутируемых секций фазового сдвига и драйвер цифрового управления параллельного типа. Сигналы управления стандарта ТТЛ. Размеры кристалла 3,5х3,0х0,1 мм.

ОСНОВНЫЕ ПАРАМЕТРЫ (T=25 °C)

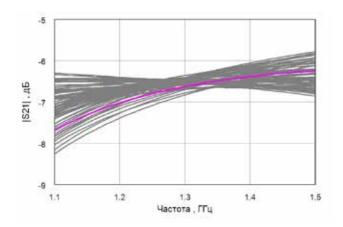
Параметр, единица измерения	Значение
Диапазон рабочих частот, ГГц	1,11,5
Количество разрядов	6
Начальные потери, дБ, не более	8
Обратные потери по входу/выходу, дБ, не более	-12
СКО фазы, град, не более	4
Амплитудная конверсия, дБ, не более	0,7
Напряжение питания, В	-7,5
Ток потребления, мА, не более	5


СТРУКТУРНАЯ СХЕМА

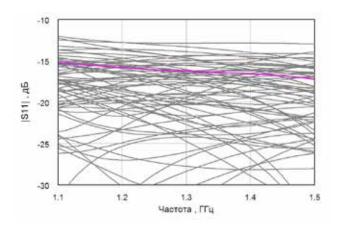
УПРАВЛЕНИЕ СОСТОЯНИЕМ

Состояние	Напряжение управления (A1-A6), В
Начальная состояние	0÷0,8
Включение фазового дискрета секции	2,4÷5,0

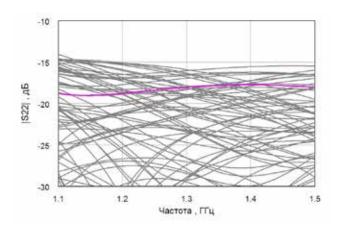
РАСПОЛОЖЕНИЕ КОНТАКТНЫХ ПЛОЩАДОК [МКМ]



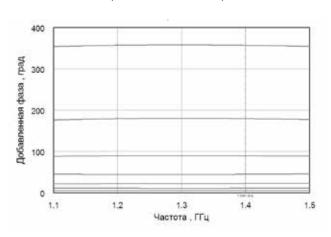
Обозначение	Назначение
Вход	СВЧ вход
Выход	СВЧ выход
A1	Управление секцией 5,6 град
A2	Управление секцией 11,2 град
A3	Управление секцией 22,5 град
A4	Управление секцией 45 град
A 5	Управление секцией 90 град
A6	Управление секцией 180 град
VSS	Напряжение питания драйвера управления
GND	Общий


Вносимые потери

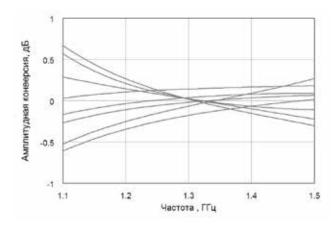
(в начальном и во всех состояниях)


Возвратные потери по входу

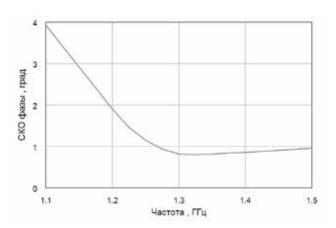
(в начальном и во всех состояниях)


Возвратные потери по выходу

(в начальном и во всех состояниях)

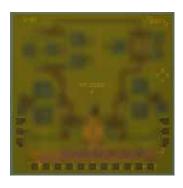

Вносимый фазовый сдвиг

(основных разрядов)



Амплитудная конверсия

(основных разрядов)



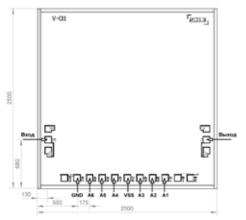
Среднеквадратичное отклонение фазы

МРЗОВ GaAs МИС 6-ти РАЗРЯДНОГО ФАЗОВОЗВРАЩАТЕЛЯ S-ДИАПАЗОНА

МИС выполнена на основе GaAs pHEMT с длиной затвора 0,5 мкм. МИС предназначена для работы в составе гибридно-интегральных модулей с общей герметизацией. МИС содержит шесть коммутируемых секций фазового сдвига и драйвер цифрового управления параллельного типа. Сигналы управления стандарта ТТЛ. Размеры кристалла 3,5х3,0х0,1 мм.

ОСНОВНЫЕ ПАРАМЕТРЫ (T=25 °C)

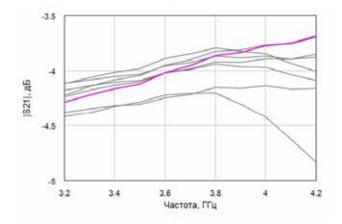
Параметр, единица измерения	Значение
Диапазон рабочих частот, ГГц	3,4 4
Количество разрядов	6
Начальные потери, дБ, не более	5
Обратные потери по входу/выходу, дБ, не более	-13
Абсолютная ошибка установленной фазы, град, не более	5
Амплитудная конверсия, дБ, не более	1,5
Напряжение питания, В	-7,5
Ток потребления, мА, не более	5


СТРУКТУРНАЯ СХЕМА

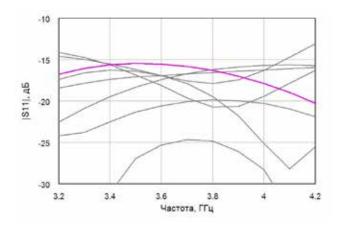
УПРАВЛЕНИЕ СОСТОЯНИЕМ

Состояние	Напряжение управления (A1-A6), В
Начальная состояние	0÷0,8
Включение фазового дискрета секции	2,4÷5,0

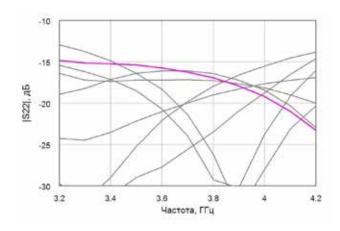
РАСПОЛОЖЕНИЕ КОНТАКТНЫХ ПЛОЩАДОК [МКМ]



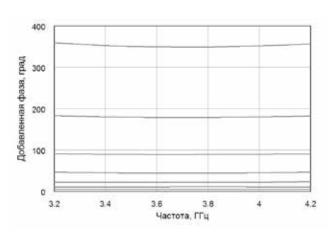
Обозначение	Назначение
Вход	СВЧ вход
Выход	СВЧ выход
A1	Управление секцией 5,6 град
A2	Управление секцией 11,2 град
A3	Управление секцией 22,5 град
A4	Управление секцией 45 град
A 5	Управление секцией 90 град
A6	Управление секцией 180 град
VSS	Напряжение питания драйвера управления
GND	Общий


Вносимые потери

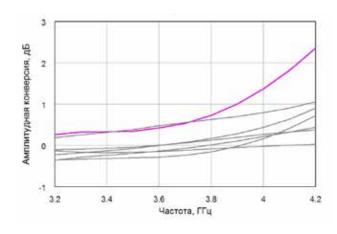
(в начальном и основных разрядов)


Возвратные потери по входу

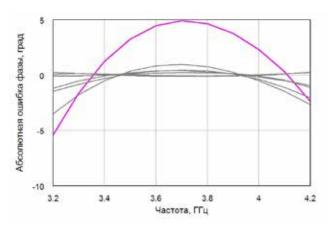
(в начальном и основных разрядов)


Возвратные потери по выходу

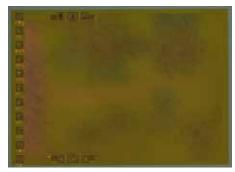
(в начальном и основных разрядов)


Вносимый фазовый сдвиг

(основных разрядов)

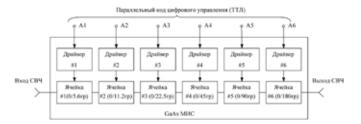

Амплитудная конверсия

(основных разрядов и полное включение)


Среднеквадратичное отклонение фазы

(основных разрядов и полное включение)

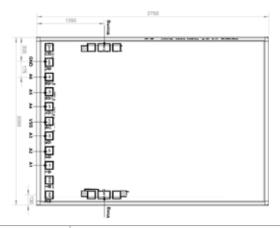
МР332 GaAs МИС 6-ти РАЗРЯДНОГО ФАЗОВОЗВРАЩАТЕЛЯ X-ДИАПАЗОНА



МИС выполнена на основе GaAs pHEMT с длиной затвора 0,5 мкм. МИС ориентирована для работы в составе гибридно-интегральных модулей с общей герметизацией. МИС содержит шесть коммутируемых секций фазового сдвига и драйвер цифрового управления параллельного типа. Сигналы управления стандарта ТТЛ. Размеры кристалла 2,75х2,0х0,1 мм.

ОСНОВНЫЕ ПАРАМЕТРЫ (T=25 °C)

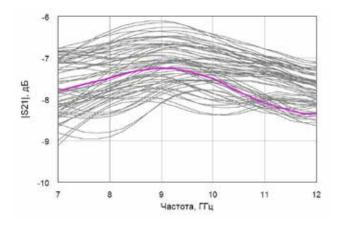
Параметр, единица измерения	Значение
Диапазон рабочих частот, ГГц	8,510,5
Количество разрядов	6
Начальные потери, дБ, не более	9
Обратные потери по входу/выходу, дБ, не более	-9
СКО фазы, град, не более	6
СКО амплитуды, дБ, не более	0,5
Напряжение питания, В	-7,5
Ток потребления, мА, не более	5


СТРУКТУРНАЯ СХЕМА

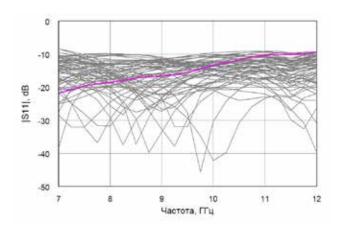
УПРАВЛЕНИЕ СОСТОЯНИЕМ

Состояние	Напряжение управления (A1-A6), В
Начальная состояние	0÷0,8
Включение фазового дискрета секции	2,4÷5,0

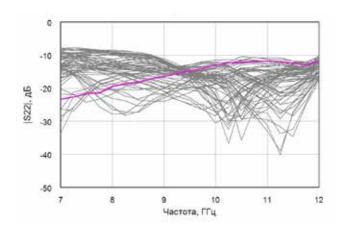
РАСПОЛОЖЕНИЕ КОНТАКТНЫХ ПЛОЩАДОК [МКМ]



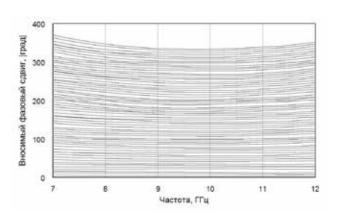
Обозначение	Назначение
Вход	СВЧ вход
Выход	СВЧ выход
A1	Управление секцией 5,6 град
A2	Управление секцией 11,2 град
А3	Управление секцией 22,5 град
A4	Управление секцией 45 град
A 5	Управление секцией 90 град
A6	Управление секцией 180 град
VSS	Напряжение питания драйвера управления
GND	Общий


Вносимые потери

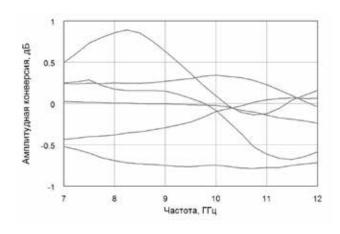
(в начальном и во всех состояниях)


Возвратные потери по входу

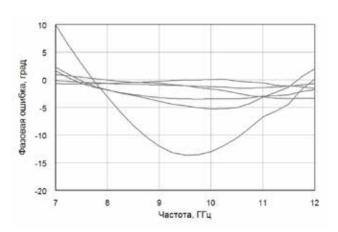
(в начальном и во всех состояниях)


Возвратные потери по выходу

(в начальном и во всех состояниях)


Вносимый фазовый сдвиг

(во всех состояниях)


Амплитудная конверсия

(основных разрядов)

Абсолютная фазовая ошибка

(основных разрядов)

УКАЗАНИЯ ПО ПРИМЕНЕНИЮ И ЭКСПЛУАТАЦИИ

Требования по защите от статического электричества по ОСТ 11 073.062-2001.

РЕКОМЕНДАЦИИ ПО МОНТАЖУ

Кристалл МИС монтируется на подложку обратной металлизированной стороной методом приклеивания с помощью электропроводного клея.

Подложка должна быть предварительно очищена и обезжирена.

На подложку следует наносить минимальное количество (дозу) электропроводного клея, так чтобы после позиционирования и установки кристалла клей выступал вокруг всего периметра кристалла (или не менее чем с трех сторон) в виде тонкого пояска.

Режимы полимеризации (отверждения) клея должны соответствовать установленным требованиям производителя клея.

РЕКОМЕНДАЦИИ ПО ПРИСОЕДИНЕНИЮ ПРОВОЛОЧНЫХ ВЫВОДОВ

Присоединение выводов к контактным площадкам кристалла МИС рекомендуется выполнять термозвуковой сваркой золотой проволокой диаметром 25-30 мкм.

Допускается выполнять стыковые (встык – «шарик») или нахлесточные (внахлестку – «клин») сварные соединения.

Все соединения должны быть выполнены при номинальной температуре нагрева рабочей зоны (температура нижнего подогрева) 150 °C.

Сварные соединения встык должны быть выполнены с применением усилия сжатия 30-60 гс, сварные соединения внахлестку – 20-50 гс.

В зону сварки следует подавать минимальное количество ультразвуковой энергии, обеспечивающее надежность и качество соединения.

Длина перемычек, соединяющих контактные площадки кристалла и подложки, должна быть по возможности минимальной.

Проволочные выводы (перемычки) после термозвуковой сварки не должны касаться структуры и боковых ребер кристалла МИС.

(8182)63-90-72 +7(7172)727-132 (4722)40-23-64 (4832)59-03-52 (423)249-28-31 (844)278-03-48 Вологда (8172)26-41-59 Воронеж (473)204-51-73 Екатеринбург (343)384-55-89 Иваново (4932)77-34-06 Ижевск (3412)26-03-58

Казань (843)206-01-48

(4012)72-03-81 (4842)92-23-67 (3842)65-04-62 (8332)68-02-04 (861)203-40-90 (391)204-63-61 (4712)77-13-04 (4742)52-20-81 (3519)55-03-13 (495)268-04-70 (8152)59-64-93 (8552)20-53-41 (831)429-08-12 (3843)20-46-81 (383)227-86-73 (4862)44-53-42 (3532)37-68-04 (8412)22-31-16 (342)205-81-47 - (863)308-18-15 (4912)46-61-64 (846)206-03-16 - (812)309-46-40 (845)249-38-78

(4812)29-41-54 (862)225-72-31 (8652)20-65-13 (4822)63-31-35 (3822)98-41-53 (4872)74-02-29 (3452)66-21-18 (8422)24-23-59 (347)229-48-12 (351)202-03-61 (8202)49-02-64 (4852)69-52-93