Архангельск (8182)63-90-72 Астана (7172)/727-132 Астрахань (8512)99-46-04 Барнаул (3852)73-04-60 Белгород (4722)40-23-64 Брянск (4832)59-03-52 Владивосток (423)249-28-31 Волограя (844)278-03-48 Вологда (8172)26-41-59 Воронеж (473)204-51-73 Екатеринбург (343)84-55-89 Иваново (4932)77-34-06 Нжевск (3412)26-03-58 Иркутск (395)279-98-46 Казань (843)206-01-48 Калининград (4012)72-03-81 Калуга (4842)92-23-67 Кемерово (3842)65-04-62 Киров (8332)68-02-04 Красноярск (391)203-40-90 Красноярск (391)204-63-61 Курск (4712)77-13-04 Липецк (4742)52-20-81

Киргизия (996)312-96-26-47

Магнитогорск (3519)55-03-13 Москва (495)268-04-70 Мурманск (8152)59-64-93 Набережные Челны (8552)20-53-41 Нижний Новгород (831)429-08-12 Новокузнецк (3843)20-46-81 Новосибирск (383)227-86-73 Омск (3812)21-46-40 Орел (4862)44-53-42 Оренбург (3532)37-68-04 Пенза (8412)22-31-16 Россия (495)268-04-70 Пермь (342)205-81-47 Ростов-на-Дону (863)308-18-15 Рязань (4912)46-61-64 Самара (846)206-03-16 Санкт-Петербург (812)309-46-40 Саратов (845)249-38-78 Севастополь (869)22-31-93 Симферополь (3652)67-13-56 Смоленск (4812)29-41-54 Сочи (862)225-72-31 Ставрополь (8652)20-65-13 Казахстан (772)734-952-31 Сургут (3462)77-98-35 Тверь (4822)63-31-35 Томск (3822)98-41-53 Тула (4872)74-02-29 Тюмень (3452)66-21-18 Ульяновск (8422)24-23-59 Уфа (347)229-48-12 Хабаровск (4212)92-98-04 Челябинск (351)202-03-61 Череновен (8202)49-02-64 Ярославль (4852)69-52-93

https://micrannpf.nt-rt.ru/ || mfp@nt-rt.ru

ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Анализаторы цепей скалярные Р2М-40

Назначение средства измерений

Анализаторы цепей скалярные P2M-40 предназначены для измерений модуля коэффициента передачи, модуля коэффициента отражения, коэффициента стоячей волны по напряжению (далее - КСВН), мощности в коаксиальном волноводе с диаметрами поперечных сечений 2,4/1,042 мм, 7,0/3,04 мм и 3,5/1,52 мм, и для генерирования электрических синусоидальных колебаний.

Описание средства измерений

Принцип действия анализаторов цепей скалярных P2M-40 основан на выделении высокочастотных электромагнитных волн (падающей, прошедшей через исследуемое устройство и отраженной от его входов), преобразовании их в низкочастотные напряжения, пропорциональные мощности этих волн, измерении напряжений и расчете модуля коэффициента отражения, КСВН, модуля коэффициента передачи. Выделение и преобразование производится с помощью головок детекторных и датчиков коэффициента стоячей волны (далее – КСВ).

Анализаторы цепей скалярные P2M-40 состоят из блока генераторно-измерительного, головок детекторных Д42-50-05, Д42-18-01, Д42-18-11, Д42-20-03, Д42-20-13, датчиков КСВ ДК4-50-05P-05P, ДК4-20-03P-03P, ДК4-20-13P-13P, ДК4-18-01P-01P, ДК4-18-11P-11P, нагрузок комбинированных и кабелей сверхвысоких частот (далее – CB4).

Анализаторы цепей скалярные P2M-40 имеют 2 модификации. Модификации характеризуются опциями, представленными в таблице 1, и отличаются возможностью расширения диапазонов установки уровня выходной мощности и измерений модуля коэффициента перелачи:

- «Р2М-40-05Р» тип 2,4 мм, розетка по ГОСТ РВ 51914-2002;
- «P2M-40-05P-ATA/70» наличие ступенчатого аттенюатора на выходе блока генераторно-измерительного.

Таблица 1

No	Наименование модификаций	Опции
1	Анализатор цепей скалярный Р2М-40/1	Опция «05Р»
2	Анализатор цепей скалярный Р2М-40/2	Опция «05Р», «АТА/70»

Внешний вид анализаторов цепей скалярных Р2М-40 представлен на рисунке 1, место пломбировки от несанкционированного доступа - на рисунке 2.

Рисунок 1 – Внешний вид анализаторов цепей скалярных P2M-40

Рисунок 2 – Место на задней панели для пломбирования от несанкционированного доступа

Программное обеспечение

Анализаторы цепей скалярные P2M-40 работают под управлением внешнего персонального компьютера с установленным программным обеспечением (далее – ПО), которое обрабатывает измерительную информацию, выполняет вычисления и обеспечивает отображение результатов измерений. Информационный обмен между анализатором цепей скалярным P2M-40 и персональным компьютером осуществляется по интерфейсу Ethernet.

ПО реализовано без выделения метрологически значимой части.

Метрологические характеристики анализаторов цепей скалярных P2M-40 нормированы с учетом влияния ПО.

Идентификационные данные ПО приведены в таблице 2.

Таблина 2

Наименование ПО	Идентифи- кационное наименова- ние ПО	Номер версии (идентификаци- онный номер) ПО	Цифровой идентифи- катор ПО (контрольная сумма исполняемого кода)	Алгоритм вычисления цифрового идентификатора ПО
Программный комплекс P2M	Graphit P2M	2.3	Для файла «launcher.exe»: b5ff8fa0d9f7b56fae1500 3b8597b891	md5

Защита программного обеспечения от непреднамеренных и преднамеренных изменений соответствует уровню «С» по классификации МИ 3286-2010.

Для работы программного обеспечения необходимо, чтобы персональный компьютер удовлетворял следующим минимальным требованиям:

- процессор Intel[®] Pentium II[®] 600 МГц (или аналог);
- наличие адаптера локальной сети Ethernet;
- оперативная память 512 Мб;
- разрешение экрана 1024 × 768.

Программное обеспечение работает в следующих операционных системах: Windows XP, Windows Wista, Windows 7. Персональный компьютер не входит в комплект поставки.

Метрологические и технические характеристики

Диапазон рабочих частот 1 , МГц от 10 до 40000. Диапазоны измерений:

- модуля коэффициента передачи, дБ

а) анализаторов без опции «ATA/70» от минус 60 до 30; б) анализаторов с опцией «ATA/70» от минус 60 до 60; от 0 до 1; от 0 до 1; от 1,02 до 5,00; от минус 55 до 7.

¹⁾ Диапазон установки частот для анализаторов при работе в режиме генератора (синтезатора частот). Частотный диапазон при измерениях модуля коэффициента передачи и отражения определяется типом используемых аксессуаров (головками детекторными и датчиками КСВ).

Диапазон установки уровня выходной мощности:	
– анализаторов без опции «АТА/70», дБм	от минус 20 до 7;
 анализаторов с опцией «АТА/70», дБм 	от минус 90 до 7.
Пределы допускаемой погрешности установки уровня	
выходной мощности в диапазоне мощностей, д $B^{1)}$:	
от минус 55 до 7 дБм	$\pm 1,5;$
– от минус 90 до менее минус 55 дБм	$\pm 2,5.$
Пределы допускаемой абсолютной погрешности измерений	
модуля коэффициента передачи, д $B^{2)}$:	
 при использовании головок детекторных Д42-50-05 	$\pm (0.02 \cdot A/+0.3);$
– при использовании головок детекторных Д42-18-01,	
Д42-18-11, Д42-20-03, Д42-20-13	$\pm (0.02 \cdot A/+0.2).$
Пределы допускаемой погрешности измерений модуля	
коэффициента отражения ²⁾ :	•
при использовании датчиков КСВ ДК4-50-05P-05Р	$\pm (0.14 \cdot \Gamma^2 + 0.04);$
– при использовании датчиков КСВ ДК4-20-03Р-03Р,	2
ДК4-20-13Р-13Р, ДК4-18-01Р-01Р, ДК4-18-11Р-11Р	$\pm (0.09 \cdot \Gamma^2 + 0.02).$
Пределы допускаемой относительной погрешности	
измерений КСВН при $K_{cmU} \le 2,0,\%^{2}$:	
при использовании датчиков КСВ ДК4-50-05P-05Р	$\pm(5\cdot K_{cmU}+3);$
– при использовании датчиков КСВ ДК4-20-03Р-03Р,	
ДК4-20-13Р-13Р, ДК4-18-01Р-01Р, ДК4-18-11Р-11Р	$\pm(3\cdot K_{cmU}+1).$
Пределы допускаемой относительной погрешности	
измерений мощности, дБ	$\pm 1,5.$
Пределы допускаемой относительной погрешности	
измерений КСВН при $2 < K_{cmU} \le 5$, % ³⁾ dK	$_{+}=[(K_{cmU}(\Gamma+D\Gamma)/K_{cmU}(\Gamma))-1]\times 00;$
dK	$= [(K_{cmU}(\Gamma - D\Gamma)/K_{cmU}(\Gamma)) - 1] \times 100.$
Пределы допускаемой относительной погрешности	
установки частоты при работе от внутреннего опорного	
генератора в течение одного года	$\pm 1.10^{-6}$.
Дискретность установки частоты, Гц	1.
КСВН выхода СВЧ, не более	2,0.
Период обновления измерений в полном диапазоне рабочих	
частот при количестве точек 501 и усреднении 3, мс, не более	500.
Количество измерительных входов	3.
Напряжение питания от сети переменного тока	
частотой (50±1) Гц, В	от 198 до 242.
Потребляемая мощность, В·А, не более	100.
Время установления рабочего режима, ч, не более	0,5.
Время непрерывной работы, ч, не менее	16.

 $^{^{1)}}$ Для анализаторов с опцией «ATA/70» пределы допускаемой относительной погрешности установки уровня мощности нормируются в режиме «Оптимальный». $^{2)} \Gamma, A, K_{cmU} -$ измеренные значения модуля коэффициента отражения, модуля коэффициента передачи и КСВН соот-

 $DA = 20 \lg[(0.9376 - (1+k^2)0.021) / (1-0.322 \lg_{ex} - 0.158 \lg_{eux} - (1+k^2) l.0021)],$

 $\Gamma_{\rm ex}$ и $\Gamma_{\rm ebbx}$ – модули коэффициентов отражения входа и выхода исследуемого четырехполюсника; k – модуль коэффициента передачи исследуемого четырехполюсника в относительных единицах по напряжению.

Погрешность измерений модуля коэффициента передачи нормируется при измерениях согласованных четырехполюсников с КСВН входа и выхода не более 1,3. Для рассогласованных четырехполюсников допускаемая дополнительная абсолютная погрешность измерений DA в дБ рассчитывается по формуле:

³⁾ Где dK_{+} и dK_{-} – верхний и нижний пределы относительной погрешности измерений КСВН; $K_{cmU}(\Gamma)$ – КСВН, равный $(1+\Gamma)/(1-\Gamma)$; *DГ* – абсолютная погрешность измерений модуля коэффициента отражения.

Габаритные размеры блока генераторно-измерительного

(высота×ширина×длина), мм, не более 170×390×400.

Масса блока генераторно-измерительного, кг, не более 11.

Рабочие условия эксплуатации:

температура окружающего воздуха, °С от 15 до 35;

относительная влажность воздуха, при плюс 25 °C, %,

не более 80;

атмосферное давление кПа (мм рт. ст.) от 70,0 до 106,7 (от 537 до 800).

Тип соединителей выхода СВЧ 2,4 мм, розетка.

Показатели надежности:

средний срок службы, лет 5; средняя наработка на отказ, ч, не менее 10000.

Знак утверждения типа

Наносится на переднюю панель блока генераторно-измерительного и титульный лист руководства по эксплуатации ЖНКЮ.468166.028 РЭ «Анализаторы цепей скалярные Р2М-40. Руководство по эксплуатации» типографским способом.

Комплектность средства измерений

Комплект поставки анализаторов цепей скалярных P2M-40 приведён в таблице 3. Таблица 3

Наименование, тип	Обозначение	Количе-	Примечание
1	2	3	4
Блок генераторно-измерительный:			
АЦС-40/1	ЖНКЮ.468151.028		опция «05Р»
АЦС-40/2	ЖНКЮ.468151.029	1	опции «05Р», «ATA/70»
Головка детекторная Д42-50-05	ЖНКЮ.467732.012-01	1	тип 2,4 мм
Головка детекторная Д42-18-01	ЖНКЮ.467732.009-01	1	тип III
Головка детекторная Д42-18-11	ЖНКЮ.467732.009-03	1	тип N
Головка детекторная Д42-20-03	ЖНКЮ.467732.010-01	1	тип IX вар. 3
Головка детекторная Д42-20-13	ЖНКЮ.467732.010-03	1	тип 3,5 мм
Датчик КСВ ДК4-50-05Р-05Р	ЖНКЮ.467739.009	1	тип 2,4 мм
Датчик КСВ ДК4-18-01Р-01Р	ЖНКЮ.467739.008	1	тип III
Датчик КСВ ДК4-18-11Р-11Р	ЖНКЮ.467739.008-01	1	тип N
Датчик КСВ ДК4-20-03Р-03Р	ЖНКЮ.467739.007	1	тип IX вар. 3
Датчик КСВ ДК4-20-13Р-13Р	ЖНКЮ.467739.007-01	1	тип 3,5 мм
Кабель СВЧ КСА40А-05-05-600	ЖНКЮ.685671.103	1	тип 2,4 мм
Кабель СВЧ КСА40А-05-05-1000	ЖНКЮ.685671.103-01	1	тип 2,4 мм
Нагрузка комбинированная НКХ1-18-01	ЖНКЮ.468518.008	1	тип III
Нагрузка комбинированная НКХ1-18-11	ЖНКЮ.468518.008-01	1	тип N
Нагрузка комбинированная НКХ2-20-03	ЖНКЮ.468518.010	1	тип IX вар. 3
Нагрузка комбинированная НКХ2-20-13	ЖНКЮ.468518.010-01	1	тип 3,5 мм
Нагрузка комбинированная НКХ3-50-05	ЖНКЮ.468518.042	1	тип 2,4 мм
Переход коаксиальный ПК2-18-11Р-05	ЖНКЮ.468562.081-01	1	тип N розетка – тип 2,4 мм вилка

Переход коаксиальный ПК2-18-01Р-05	ЖНКЮ.468562.081	1	тип III розетка - тип 2,4 мм вилка
Переход коаксиальный ПК2-18-11-05Р	ЖНКЮ.468562.080-01	1	тип N вилка - тип 2,4 мм розетка
Переход коаксиальный ПК2-18-01-05Р	ЖНКЮ.468562.080	1	тип III вилка - тип 2,4 мм розетка
Переход коаксиальный ПК2-26-03Р-05	ЖНКЮ.468562.063	1	тип IX вар. 3 розетка - тип 2,4 мм вилка
Переход коаксиальный ПК2-26-13Р-05	ЖНКЮ.468562.063-01	1	тип 3,5 мм розетка - тип 2,4 мм вилка
Переход коаксиальный ПК2-26-03-05Р	ЖНКЮ.468562.062	1	тип IX вар. 3 вилка - тип 2,4 мм розет- ка
Переход коаксиальный ПК2-26-13-05Р	ЖНКЮ.468562.062-01	1	тип 3,5 мм вилка - тип 2,4 мм розетка
Кабель Ethernet	ЖНКЮ.685611.077	1	патч-корд Cat.5e или аналог
Кабель питания	ЖНКЮ.685631.067	1	евростандарт, с за- земляющим про- водником
Формуляр	ЖНКЮ.468166.028ФО	1	
Методика поверки	ЖНКЮ.468166.028Д3	1	
Руководство по эксплуатации	ЖНКЮ.468166.028РЭ	1	три части
Программный комплекс Р2М	ЖНКЮ.02007-07	1	поставляется на компакт-диске
Упаковка	ЖНКЮ.468916.005	1	

Примечания:

- 1 Модификация блока генераторно-измерительного определяется при заказе.
- 2 Количество и типы головок детекторных, датчиков КСВ и кабелей СВЧ определяются при заказе.
- 3 Характеристики головок детекторных и датчиков КСВ записаны на компакт-диск в комплекте поставки.
 - 4 Переходы коаксиальные поставляются по согласованию с потребителем.

Поверка

осуществляется по документу ЖНКЮ.468166.028 ДЗ «ГСИ. Анализаторы цепей скалярные P2M-40. Методика поверки», утвержденному ФБУ «Томский ЦСМ» в январе 2013 г.

Основные средства поверки:

- ваттметр поглощаемой мощности E4418B с первичными измерительными преобразователями 8487D (диапазон рабочих частот от 50 до 40000 МГц; диапазон измеряемого уровня мощности от минус 60 до минус 20 дБм) и 8487A (диапазон рабочих частот от 50 до 40000 МГц; диапазон измеряемого уровня мощности от минус 30 до 20 дБм), пределы допускаемой относительной погрешности измерений мощности ± 8 %;
- анализатор спектра Е4448A, диапазон частот от 3 Γ ц до 50 Γ Γ ц; средний уровень собственных шумов минус 140 дБм, пределы допускаемой абсолютной погрешности измерения частоты $\pm (0.18 \cdot 10^{-6} \cdot f + 0.1 \ \Gamma$ ц);
- набор мер коэффициентов передачи и отражения H/M-50-2,4 мм, диапазон рабочих частот от 10 до 40000 МГц, номинальные значения КСВН мер 1,2 и 2,0, пределы допускаемой относительной погрешности определения действительных значений $\pm 4,5$ %; номинальные значения ослаблений аттенюаторов 10, 20 и 30 дБ, пределы допускаемой абсолютной погрешности определения действительных значений $\pm 0,3$ дБ;

- набор мер КСВН и полного сопротивления 1-го разряда ЭК9-140, диапазон рабочих частот от 10 до 4000 МГц, номинальные значения КСВН мер 1,2 и 2,0, пределы допускаемой относительной погрешности определения действительных значений мер $\pm 2,5$ %;
- набор мер КСВН и полного сопротивления 1-го разряда ЭК9-145, диапазон рабочих частот от 4000 до 18000 МГц, номинальные значения КСВН мер 1,2 и 2,0, пределы допускаемой относительной погрешности определения действительных значений мер $\pm 2,0\%$;
- набор мер H/M-18-3,5 мм, диапазон рабочих частот от 10 до 18000 МГц, номинальные значения КСВН мер 1,2 и 2,0, пределы допускаемой относительной погрешности определения действительных значений мер ±4,0 %.

Сведения о методиках (методах) измерений

Метод измерений приведен в документе ЖНКЮ.468166.028 РЭ «Анализаторы цепей скалярные Р2М-40. Руководство по эксплуатации».

Нормативные и технические документы, устанавливающие требования к анализаторам цепей скалярным P2M-40

- 1. ГОСТ 22261–94 Средства измерений электрических и магнитных величин. Общие технические условия.
- 2. ЖНКЮ.468166.028 ТУ. Анализаторы цепей скалярные Р2М-40. Технические условия.
- 3. МИ 1700-87 ГСИ. Государственная поверочная схема для средств измерений полного сопротивления в коаксиальных волноводах поперечного сечения 16/6,95; 16/4,58; 7/3,04 и 3,5/1,52 мм в диапазоне частот 0,02-18,00 ГГц.

Рекомендации по областям применения в сфере государственного регулирования обеспечения единства измерений

Выполнение работ по оценке соответствия промышленной продукции и продукции других видов, а также иных объектов установленным законодательством Российской Федерации обязательным требованиям.

Архангельск (8182)63-90-72 Астана (7172)/727-132 Астрахань (8512)99-46-04 Барнаул (3852)/3-04-60 Белгород (4722)40-23-64 Брянск (4832)59-03-52 Владивосток (423)249-28-31 Волгоград (844/278-03-48 Волоград (8172)26-41-59 Воронеж (473)204-51-73 Екатеринбург (343)84-55-89 Иваново (4932)/7-34-06 Нжевск (3412)26-03-58 Нркутск (395)279-98-46 Казань (843)206-01-48 Калининград (4012)72-03-81 Калуга (4842)92-23-67 Кемерово (3842)65-04-62 Киров (8332)68-02-04 Красноярск (391)204-63-61 Курск (4712)77-13-04 Липецк (4742)52-20-81

Киргизия (996)312-96-26-47

Магнитогорск (3519)55-03-13 Москва (495)268-04-70 Мурманск (8152)59-64-93 Набережные Челны (8552)20-53-41 Нижний Новгород (831)429-08-12 Новокойррск (383)227-86-73 Омск (3812)21-46-40 Орел (4862)44-53-42 Оренбург (3532)37-68-04 Пенза (8412)22-31-16 Россия (495)268-04-70 Пермь (342)205-81-47 Ростов-на-Дону (863)308-18-15 Рязань (4912)46-61-64 Самара (846)206-03-16 Санкт-Петербург (812)309-46-40 Саратов (845)249-38-78 Севастополь (869)22-31-93 Симферополь (3652)67-13-56 Смоленск (4812)29-41-54 Сочи (862)225-72-31 Ставрополь (8652)0-65-13 Казакстан (772)734-952-31

Тула (4872)74-02-29 Тюмень (3452)66-21-18 Ульяновек (8422)24-23-59 Уфа (347)229-48-12 Хабаровек (4212)92-98-04 Челябинек (351)202-03-61 Череповец (8202)49-02-64 Ярославль (4852)69-52-93

Сургут (3462)77-98-35

Тверь (4822)63-31-35 Томск (3822)98-41-53