ЦРРС МИК-РЛ400Р

Новое поколение ЦРРС диапазона 400 МГц МИК-РЛ400Р предоставляет пользователю повышенную пропускную способность - до 8 Мбит/с, увеличенную энергетику радиолинии, возможность передачи комбинированного трафика TDM+Ethernet и широкий набор функциональных возможностей для работы на протяженных и/или полузакрытых трассах.

Конструктивно аппаратура цифровой РРС «МИК-РЛ400Р» выполнена в раздельном исполнении:

- выносное оборудование (ODU) антенные и приёмопередающие устройства;
- внутреннее оборудование (IDU) модуль доступа, источники питания.

Приемо-передающие устройства (ППУ) Приемо-передающие устройства (ППУ) ЦРРС МИК-РЛ400Р устанавливаются в непосредственной близости от антенны. ППУ имеет универсальный цифровой модем с программно переключаемыми видами модуляции QPSK / 8QAM / 16QAM / 32QAM / 64QAM. Соединение ППУ с модулем доступа - один оптический кабель, по которому передаются цифровые потоки и сигналы телеметрии. Питание на ППУ подается по отдельному электрическому кабелю от станционного источника питания. Выход ППУ — коаксиальный разъем. Антенные устройства аналогичны применяемым в аппаратуре МИК-РЛ400М.

Модуль доступа МД1-1РУ Модуль доступа МД1-1РУ выполняет функции мультиплексирования основного и дополнительного трафика, контроля и управления, резервирования стволов, обеспечивает подачу питания

ППУ. МД1-1РУ обеспечивает передачу трафика Ethernet, до 4 потоков E1 (2 встроенных интерфейса E1 и дополнительные интерфейсы E1 в сменном блоке) или комбинированный трафик Ethernet + n×E1. Встроенный коммутатор обеспечивает ввод/вывод и транзит потоков E1 между радиоканалом и двумя транзитными портами. Модуль выполнен в корпусе «Евромеханика» 19" высотой 1U. Пользователем могут устанавливаться следующие сменные блоки:

По вопросам продаж и поддержки обращайтесь:

Архангельск (8182)63-90-72 Астана +7(7172)727-132 Астрахань (8512)99-46-04 Барнаул (3852)73-04-60 Белгород (4722)40-23-64 Брянск (4832)59-03-52 Владивосток (423)249-28-31 Волгоград (844)278-03-48 Вологда (8172)26-41-59 Воронеж (473)204-51-73 Екатеринбург (343)384-55-89 Иваново (4932)77-34-06 Ижевск (3412)26-03-58 Иркутск (395) 279-98-46 Казань (843)206-01-48
Калининград (4012)72-03-81
Калуга (4842)92-23-67
Кемерово (3842)65-04-62
Киров (8332)68-02-04
Краснодар (861)203-40-90
Красноярск (391)204-63-61
Курск (4712)77-13-04
Липецк (4742)52-20-81
Магнитогорск (3519)55-03-13
Москва (495)268-04-70
Мурманск (8152)59-64-93
Набережные Челны (8552)20-53-41
Нижний Новгород (831)429-08-12

Новокузнецк (3843)20-46-81 Новосибирск (383)227-86-73 Омск (3812)21-46-40 Орел (4862)44-53-42 Оренбург (3532)37-68-04 Пенза (8412)22-31-16 Пермь (342)205-81-47 Ростов-на-Дону (863)308-18-15 Рязань (4912)46-61-64 Самара (846)206-03-16 Санкт-Петербург (812)309-46-40 Саратов (845)249-38-78 Севастополь (8692)22-31-93 Симферополь (3652)67-13-56 Смоленск (4812)29-41-54 Сочи (862)225-72-31 Ставрополь (8652)20-65-13 Сургут (3462)77-98-35 Тверь (4822)63-31-35 Томск (3822)98-41-53 Тула (4872)74-02-29 Тюмень (3452)66-21-18 Ульяновск (8422)24-23-59 Уфа (347)229-48-12 Хабаровск (4212)92-98-04 Челябинск (351)202-03-61 Череповец (8202)49-02-64 Ярославль (4852)69-52-93

Киргизия (996)312-96-26-47

Казахстан (772)734-952-31

Таджикистан (992)427-82-92-69

Эл. почта: mfp@nt-rt.ru || Сайт: http://micrannpf.nt-rt.ru/

блок БИ-16Е1-У (интерфейсы 16хЕ1)

блок БИ-Eth-У (интерфейс 2xEthernet)

блок БС-02-У (для сопряжения с системой ТУ-ТС модулей доступа МД1-1 и МД1-1Р)

блок БС-01-О (оптический интерфейс МД-ППУ)

Установка режимов работы, управление и мониторинг РРС осуществляется при помощи компьютера. Интерфейс канала служебной связи позволяет использовать обычный телефонный аппарат. Восьмиканальный интерфейс позволяет контролировать состояние и управлять внешними устройствами. Интерфейс CAN служит для присоединения к системе управления источников питания ИБЭП-220/48(60)-хх и мультиплексоров МД-Е1. Предусмотрено резервирование питания путём подключения к двум независимым источникам. Предусмотрена возможность обновления ПО модуля через USB-порт.

МИК-РЛ400Р

- Изменяемая пропускная способность 2...8 Мбит/с
- Полезная нагрузка до 4xE1/Ethernet при модуляции QAM64
- Совместная передача TDM и Ethernet трафика с возможностью гибкого перераспределения пропускной способности
- Встроенный коммутатор с возможностью разветвления и переназначения трафика
- Автоматическое резервирование стволов по критериям достоверности (BER), уровня приёма и аппаратной аварии
- Дополнительные каналы с цифровыми и аналоговыми интерфейсами (дополнительный модуль МД-Е1)
- Цифровой канал служебной связи с селективным вызовом
- Входы/выходы внешних сигнальных датчиков и исполнительных устройств
- Система телеуправления и телесигнализации (ТУ-ТС) РРЛ
- Встроенные средства тестирования и контроля параметров оборудования
- ПО «Мастер» для дистанционного мониторинга и управления сетью РРЛ

Новое поколение ЦРРС диапазона 400 МГц МИК-РЛ400Р предоставляет пользователю повышенную пропускную способность — до 8 Мбит/с, увеличенную энергетику радиолинии, возможность передачи комбинированного трафика TDM+Ethernet и широкий набор функциональных возможностей для работы на протяженных и/или полузакрытых трассах.

Приемо-передающие устройства (ППУ) ЦРРС МИК-РЛ400Р устанавливаются в непосредственной близости от антенны. ППУ имеет универсальный цифровой модем с программно переключаемыми видами модуляции QPSK / 8QAM / 16QAM / 32QAM / 64QAM. Соединение ППУ с модулем доступа — один оптический кабель, по которому передаются цифровые потоки и сигналы телеметрии. Питание на ППУ подается по отдельному электрическому кабелю от станционного источника питания. Выход ППУ — коаксиальный разъем.

Модуль доступа МД1-1РУ выполняет функции мультиплексирования основного и дополнительного трафика, контроля и управления, резервирования стволов, обеспечивает подачу питания ППУ. МД1-1РУ обеспечивает передачу трафика Ethernet, до 4 потоков E1 или комбинированный трафик Ethernet + nxE1. Встроенный коммутатор обеспечивает ввод/вывод и транзит потоков E1 между радиоканалом и двумя транзитными портами. Модуль выполнен в корпусе «Евромеханика» 19" высотой 1U.

Установка режимов работы, управление и мониторинг РРС осуществляется при помощи компьютера. Интерфейс канала служебной связи позволяет использовать обычный телефонный аппарат. Восьми канальный интерфейс позволяет контролировать состояние и управлять внешними устройствами. Интерфейс САN служит для присоединения к системе управления источников питания ИБЭП-220/48(60)-хх и мультиплексоров МД-Е1. Предусмотрено резервирование питания путём подключения к двум независимым источникам. Предусмотрена возможность обновления ПО модуля через USB-порт.

2...8 Мбит/с

-60...+50 °С арктическое исполнение

Работа на полузакрытых **nLOS** интервалах

Технические характеристики

Рабочий диапазон частот, МГц	394410 / 434450
Дуплексный разнос, МГц	40 (25,1254,88)
Минимальный разнос между соседними стволами, кГц	1860
Перестройка частот	программная, шаг 5 кГц

Конфигурация системы	1 ствол	2 ствола
1 пара частот	1+0 — без резерва	1+1 ПР¹ — «теплый резерв»
2 пары частот	_	1+1 ЧР² ПР ВР³ — ЧРТ⁴

Критерии переключения на резерв	BER, PBx, LOS, AIS, HW-alarm				
Вид модуляции	QPSK	QAM8	QAM16	QAM32	QAM64
Выходная мощность передатчика, дБм	35	33	32	30	29
Чувствительность приемника, дБм при BER = 10-6	-96	-93	-90	-84	-81
Скорость передачи, Кбит/с	2 340	3 510	4 680	7 020	8 424

Полезная нагрузка	До 4xE1/Ethernet
Служебная связь	цифровой канал с адресным вызовом
	(2-х проводное окончание FXS)
Контроль достоверности (BER)	процедура CRC
Контроль исправности	световые индикаторы, СПО «Мастер М»
Контроль/управление внешними устройствами	8 входов/8 выходов
Мониторинг и управление	СПО «Мастер М»
Электропитание оборудования, В	-3972
Мощность потребления ППУ/МД, не более, Вт	45/10

Kabasu awayawa	Кабель трафика	Кабель питания		
Кабели снижения	(ППУ - модуль доступа)	(ППУ - источник питания)		
Тип кабеля	оптический одномодовый	электрический		
Сечение кабеля, мм²	2 оптических волокна	2×1,5	2×2,5	2×4
Максимальная длина	кабель снижения + ВОЛС	при U _{пит} = -48/-60 В		
кабельной трассы, м	15 000	200/500	300/800	500/1300

Прочие характеристики	Приемопередающее устройство	Модуль доступа
Диапазон рабочих температур, °С	–50 (–60)+50 (арктическое исполнние)	+5+45
Масса оборудования, кг	7,5	3
Габариты оборудования, мм	264×370×125	480×44×240 (19", 1U)

Autouuoo vetnovetno tun	Антенная решетка			
Антенное устройство, тип	из двух Z-изл.	из двух ЛПА	из четырех ЛПА	
Коэффициент усиления, дБи	14	14	17	
Масса, кг	10,5	5,5	14	
Габариты, мм	1050×1050×200	682×1340×380	1570×680×1340	

 $^{^{1}}$ Пространственное разнесение стволов (ПР). $-^{2}$ Частотное разнесение стволов (ЧР). $-^{3}$ Временное разнесение стволов (ВР).

⁻ 4 Частичное резервирование трафика (ЧРТ): 1+1 (резервирование) для защищенной части трафика и 2+0 (удвоенная пропускная способность) для незащищенной части трафика.